

    
      
          
            
  
MPAthic


Quantitative Modeling of Sequence-function Relationships for Massively Parallel Assays

*Written by Ammar Tareen*

Under Active Development
MPAthic 1 is a python API and it infers quantitative models from data.
Most MPAthic classes take in one or more tabular text files as input and return a tabular text file as output.
All input and output files are designed to be human readable. The first line of each tabular text file contains
headers describing the contents of each column. All input files are required to have the proper set of
columns, which of course depend on the command being executed. By default, input is taken from the standard
input and output is written to the standard output.
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Installation


Prerequisites

MPAthic uses some Non-python resources and has the following prerequisites for installation:


	
	GCC [https://gcc.gnu.org/]

	GCC, which contains both C compilers and Fortran compilers, is required to run MPAthic. From with in terminal, run the command gcc.

$ gcc
$ clang: error: no input files





Check that gfortran was installed with gcc.

$ gfortran
$ gfortran: fatal error: no input files ...











	
	NUMPY [http://www.numpy.org/]

	numpy is required to be installed before mpathic can be installed.

pip install numpy
















Install MPAthic

With the prerequisites installed, MPAthic can be installed using the pip (version 9.0.0 or higher) from
PyPI [https://pypi.python.org/pypi/mpathic]. At the command line:

pip install mpathic





The code for MPAthic is open source and available on
GitHub [https://github.com/jbkinney/mpathic]. Some commonly encountered installation issues can be found here: Common Installation Issues






Quick Start

The following snippets show how to use MPAthic from within python.

import mpathic as mpa
mpa.demo()








Resources



	Tutorial
	Simulating Data

	Computing Profiles

	Quantitative Modeling





	Examples

	Documentation
	mpa.SimulateLibrary

	mpa.SimulateSort

	mpa.ProfileFreq
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	mpa.ProfileInfo

	mpa.LearnModel
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	mpa.ScanModel

	mpa.PredictiveInfo
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Contact

For technical assistance or to report bugs, please
contact Ammar Tareen.

For more general correspondence, please
contact Justin Kinney.

Other links:


	Kinney Lab [http://kinneylab.labsites.cshl.edu/]


	Simons Center for Quantitative Biology [https://www.cshl.edu/research/quantitative-biology/]


	Cold Spring Harbor Laboratory [https://www.cshl.edu/]
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Tutorial

Import the MPAthic package as follows:

import mpathic as mpa






Simulating Data

We begin by simulating a library of variant CRP binding sites. We can use the mpa.SimulateLibrary class to
create a library of random mutants from an initial wildtype sequence and mutation rate:

sim_library = mpa.SimulateLibrary(wtseq="TAATGTGAGTTAGCTCACTCAT", mutrate=0.24)
sim_library.output_df.head()





The output_df attribute of the sim_library class looks like the dataframe below







	ct

	seq





	21

	TAATGTGAGTTAGCTCACTCAT



	7

	TAATGTGAGTTAGCTAACTCAT



	6

	TAATGTGAGTTAGCTCACTCAA






⋮







	1

	TAATGTGTGTTCGCTCATCCAT






In general, MPAthic datasets are pandas dataframes, comprising of columns of counts and sequence values. To simulate
a Sort-Seq experiment (1), we use the mpa.SimulateSort class. This class requires a dataset input
and a model dataframe input. We first import these inputs using io module provided with the MPAthic package:

# Load dataset and model dataframes
dataset_df = mpa.io.load_dataset('sort_seq_data.txt')
model_df = mpa.io.load_model('crp_model.txt')





Next, we call the SimulateSort class as follows:

# Simulate a Sort-Seq experiment
sim_sort = mpa.SimulateSort(df=dataset_df,mp=model_df)
sim_sort.output_df.head()





The head of the output dataframe looks like












	ct

	ct_0

	ct_1

	ct_2

	ct_3

	ct_4

	seq





	4

	0

	0

	1

	0

	0

	AAAAAAGGTGAGTTAGCTAACT



	3

	0

	0

	0

	0

	1

	AAAAAATATAAGTTAGCTCGCT



	4

	0

	0

	0

	1

	0

	AAAAAATATGATTTAGCTGACT



	3

	0

	0

	0

	0

	1

	AAAAAATGTCAGTTAGCTCACT



	4

	0

	0

	1

	0

	0

	AAAAAATGTGAATTATCGCACT









Computing Profiles

It is often useful to compute the mutation rate within a set of sequences, e.g., in order to validate the
composition of a library. This can be accomplished using the mpa.ProfileMut class as follows:

profile_mut = mpa.ProfileMut(dataset_df = dataset_df)
profile_mut.mut_df.head()





The mutation rate at each position within the sequences looks like








	pos

	wt

	mut





	0

	A

	0



	1

	A

	0



	2

	A

	0.33871



	3

	T

	0.127566



	4

	A

	0.082111






To view the frequency of occurrence for every base at each position, use the mpa.ProfileFreq class:

profile_freq = mpa.ProfileFreq(dataset_df = dataset_df)
profile_freq.freq_df.head()














	pos

	freq_A

	freq_C

	freq_G

	freq_T





	0

	1

	0

	0

	0



	1

	1

	0

	0

	0



	2

	0.66129

	0.33871

	0

	0



	3

	0.043988

	0.042522

	0.041056

	0.872434



	4

	0.917889

	0.019062

	0.02566

	0.03739






Information pro les (also called “information footprints”) provide a particularly useful way to identify
functional positions within a sequence. These pro les list, for each position in a sequence, the mutual
information between the character at that position and the bin in which a sequence is found. Unlike mutation
and frequency profiles, which require sequence counts for a single bin only, information profiles are
computed from full datasets, and can be accomplished using the mpa.ProfileInfo class as follows:

profile_info = mpa.ProfileInfo(dataset_df = dataset_df)
profile_info.info_df.head()











	pos

	info





	0

	0.000077



	1

	0.000077



	2

	0.008357



	3

	0.008743



	4

	0.013745









Quantitative Modeling

The mpa.LearnModel class can be used to  fit quantitative models to data:

learned_model = mpa.LearnModel(df=dataset_df)
learned_model.output_df.head()














	pos

	val_A

	val_C

	val_G

	val_T





	0

	-0.201587

	0.067196

	0.067196

	0.067196



	1

	-0.201587

	0.067196

	0.067196

	0.067196



	2

	-0.10637

	-0.167351

	0.13686

	0.13686



	3

	-0.287282

	0.041222

	-0.2039

	0.44996



	4

	-0.056109

	-0.871858

	0.344537

	0.583429






The purpose of having a quantitative model is to be able to predict the activity
of arbitrary sequences. This basic operation is accomplished using the mpa.EvaluateModel class:

eval_model = mpa.EvaluateModel(dataset_df = dataset_df, model_df = model_df)
eval_model.out_df.head()

















	ct

	ct_0

	ct_1

	ct_2

	ct_3

	ct_4

	seq

	val





	1

	0

	0

	1

	0

	0

	AAAGGTGAGTTAGCTAACTCAT

	0.348108



	1

	0

	0

	0

	0

	1

	AAATATAAGTTAGCTCGCTCAT

	-0.248134



	1

	0

	0

	0

	1

	0

	AAATATGATTTAGCTGACTCAT

	0.009507



	1

	0

	0

	0

	0

	1

	AAATGTCAGTTAGCTCACTCAT

	0.238852



	1

	0

	0

	1

	0

	0

	AAATGTGAATTATCGCACTCAT

	-0.112121






Often, it is useful to scan a model over all sequences embedded within larger contigs. To
do this, MPAthic provides the class mpa.ScanModel, which is called as follows:

# get contigs, provided with mpathic
fastafile = "./mpathic/examples/genome_ecoli_1000lines.fa"
contig = mpa.io.load_contigs_from_fasta(fastafile, model_df)

scanned_model = mpa.ScanModel(model_df = model_df, contigs_list = contigs_list)
scanned_model.sitelist_df.head()
















	
	val

	seq

	left

	right

	ori

	contig





	0

	2.040628

	GGTCGTTTGCCTGCGCCGTGCA

	11710

	11731

	
	




	MG1655.fa



	1

	2.00608

	GGAAGTCGCCGCCCGCACCGCT

	74727

	74748

	
	




	MG1655.fa



	2

	1.996992

	TGGGTGTGGCGCGTGACCTGTT

	45329

	45350

	
	




	MG1655.fa



	3

	1.920821

	GGTATGTGTCGCCAGCCAGGCA

	38203

	38224

	
	




	MG1655.fa



	4

	1.879852

	GGTGATTTTGGCGTGGTGGCGT

	73077

	73098

	
	




	MG1655.fa






A good way to assess the quality of a model is to compute its predictive information on a massively
parallel data set. This can be done using the predictive_info (need to write this) class:

predictive_info = mpa.PredictiveInfo(data_df = dataset_df, model_df = model_df,start=52)





References


	1

	Kinney JB, Anand Murugan, Curtis G. Callan Jr., and Edward C. Cox (2010) Using deep sequencing to characterize the biophysical mechanism of a transcriptional regulatory sequence. [http://www.pnas.org/content/107/20/9158] PNAS May 18, 2010. 107 (20) 9158-9163;
PDF.











          

      

      

    

  

    
      
          
            
  
Examples

Simulations

# Simulate library example

import mpathic as mpa

# reate a library of random mutants from an initial wildtype sequence and mutation rate
sim_library = mpa.SimulateLibrary(wtseq="TAATGTGAGTTAGCTCACTCAT", mutrate=0.24)
sim_library.output_df.head()

# Load dataset and model dataframes
dataset_df = mpa.io.load_dataset('sort_seq_data.txt')
model_df = mpa.io.load_model('crp_model.txt')

# Simulate a Sort-Seq experiment example
sim_sort = mpa.SimulateSort(df=dataset_df,mp=model_df)
sim_sort.output_df.head()





Profiles

import mpathic as mpa


# Load dataset and model dataframes
dataset_df = mpa.io.load_dataset('sort_seq_data.txt')
model_df = mpa.io.load_model('crp_model.txt')

# mut profile example
profile_mut = mpa.ProfileMut(dataset_df = dataset_df)
profile_mut.mut_df.head()

# freq profile example
profile_freq = mpa.ProfileFreq(dataset_df = dataset_df)
profile_freq.freq_df.head()

# info profile example
profile_info = mpa.ProfileInfo(dataset_df = dataset_df)
profile_info.info_df.head()





Models

import mpathic as mpa

# Load dataset and model dataframes
dataset_df = mpa.io.load_dataset('sort_seq_data.txt')
model_df = mpa.io.load_model('crp_model.txt')

# learn models example
learned_model = mpa.LearnModel(df=dataset_df)
learned_model.output_df.head()

# evaluate models example
eval_model = mpa.EvaluateModel(dataset_df = dataset_df, model_df = model_df)
eval_model.out_df.head()

# scan models example
# get contigs, provided with mpathic
fastafile = "./mpathic/examples/genome_ecoli_1000lines.fa"
contig = mpa.io.load_contigs_from_fasta(fastafile, model_df)

scanned_model = mpa.ScanModel(model_df = model_df, contigs_list = contigs_list)
scanned_model.sitelist_df.head()

# predictive info example
predictive_info = mpa.PredictiveInfo(data_df = dataset_df, model_df = model_df,start=52)









          

      

      

    

  

    
      
          
            
  
Documentation



	mpa.SimulateLibrary
	Overview

	Usage

	Class Details





	mpa.SimulateSort
	Class Details





	mpa.ProfileFreq
	Class Details





	mpa.ProfileMut
	Class Details





	mpa.ProfileInfo
	Class Details





	mpa.LearnModel
	Overview

	Example Input and Output

	Class Details





	mpa.EvaluateModel
	Overview

	Usage

	Example Input and Output

	Class Details





	mpa.ScanModel
	Class Details





	mpa.PredictiveInfo
	Class Details










mpa.demo()


	
mpathic.demo(example='simulation')

	Runs a demonstration of mpathic.


	Parameters

	
	example: (str)

	A string specifying which demo to run. Must be ‘simulation’,
‘profile’, or ‘modeling’.







	Returns

	
	None.

	

















          

      

      

    

  

    
      
          
            
  
mpa.SimulateLibrary


Overview

simulate library is a program within the mpathic package which creates a library of
random mutants from an initial wildtype sequence and mutation rate.




Usage

>>> import mpathic
>>> mpathic.SimulateLibrary(wtseq="TAATGTGAGTTAGCTCACTCAT")





Example Output Table:

ct            seq
1002          TAATGTGAGTTAGCTCACTCAT
50            TAATGTGAGTTAGATCACTCAT
...








Class Details


	
class simulate_library.SimulateLibrary(**kwargs)

	
	Parameters

	
	wtseq(string)

	wildtype sequence. Must contain characteres ‘A’, ‘C’, ‘G’,’T’ for

dicttype = ‘DNA’, ‘A’, ‘C’, ‘G’,’U’ for  dicttype = ‘RNA’



	mutrate(float)

	mutation rate.



	numseq(int)

	number of sequences. Must be a positive integer.



	dicttype(string)

	sequence dictionary: valid choices include ‘dna’, ‘rna’, ‘pro’



	probarr(np.ndarray)

	probability matrix used to generate bases



	tags(boolean)

	If simulating tags, each generated seq gets a unique tag



	tag_length(int)

	Length of tags. Should be >= 0







	Attributes

	
	output_df(pandas dataframe)

	Contains the output of simulate library in a pandas dataframe.










	
arr2seq(arr, inv_dict)

	Change numbers back into base pairs.






	
seq2arr(seq, seq_dict)

	Change base pairs to numbers















          

      

      

    

  

    
      
          
            
  
mpa.SimulateSort


Contents


	mpa.SimulateSort


	Class Details










Overview

SimulateSort is a program within the mpathic package which simulates
performing a Sort Seq experiment.

Usage

>>> import mpathic
>>> loader = mpathic.io
>>> mp_df = loader.load_model('./mpathic/examples/true_model.txt')
>>> dataset_df = loader.load_dataset('./mpathic/data/sortseq/full-0/library.txt')
>>> mpathic.SimulateSort(df=dataset_df,mp=mp_df)





Example Input and Output

The input table to this function must contain sequence, counts, and energy columns

Example Input Table:

seq    ct    val
AGGTA  5     -.4
AGTTA  1     -.2
...





Example Output Table:

seq    ct    val    ct_1     ct_2     ct_3 ...
AGGTA  5     -.4    1        2        1
AGTTA  1     -.2    0        1        0
...





The output table will contain all the original columns, along with the sorted columns (ct_1, ct_2 …)


Class Details


	
class simulate_sort.SimulateSort(**kwargs)

	Simulate cell sorting based on expression.


	Parameters

	
	df: (pandas dataframe)

	Input data frame.



	mp: (pandas dataframe)

	Model data frame.



	noisetype: (string, None)

	Noise parameter string indicating what type of

noise to include. Valid choices include None, ‘Normal’, ‘LogNormal’, ‘Plasmid’



	npar: (list)

	parameters to go with noisetype. E.g. for

noisetype ‘Normal’, npar must contain the width of the normal distribution



	nbins: (int)

	Number of bins that the different variants will get sorted into.



	sequence_library: (bool)

	A value of True corresponds to simulating sequencing the library in bin zero



	start: (int)

	Position to start analyzed region



	end: (int)

	Position to end analyzed region



	chunksize: (int)

	This represents the size of chunk the data frame df will be traversed over.







	Attributes

	
	output_df: (pandas data frame)

	contains the output of the simulate_sort constructor



















          

      

      

    

  

    
      
          
            
  
mpa.ProfileFreq

Overview

ProfileFreq is a program within the mpathic package which calculates the
fractional occurrence of each base or amino acid at each position.

Usage

>>> import mpathic as mpa
>>> mpa.ProfileFreq(dataset_df = dataset_df)





Example Input and Output

Input tables must contain a position column (labeled ‘’pos’‘) and columns for
each base or amino acid (labeled ct_A, ct_C…).

Example Input Table:

pos ct_A ct_C ct_G ct_T
0   10   20   40   30
...





Example Output Table:

pos freq_A freq_C freq_G freq_T
0   .1     .2     .4     .3
...






Class Details


	
class profile_freq.ProfileFreq(**kwargs)

	Profile Frequencies computes character frequencies (0.0 to 1.0) at each position


	Parameters

	
	dataset_df: (pandas dataframe)

	A dataframe containing a valid dataset.



	bin: (int)

	A bin number specifying which counts to use



	start: (int)

	An integer specifying the sequence start position



	end: (int)

	An integer specifying the sequence end position







	Returns

	
	freq_df: (pd.DataFrame)

	A dataframe containing counts for each nucleotide/amino

acid character at each position.



















          

      

      

    

  

    
      
          
            
  
mpa.ProfileMut

Overview

It is often useful to compute the mutation rate within a set of sequences, e.g., in order to
validate the composition of a library. This can be accomplished using the profile mut class as follows:

Usage

>>> import mpathic as mpa
>>> mpa.ProfileMut(dataset_df = valid_dataset)





Example Input:

ct                     seq

259  TAATGTGAGTTAGCTCACTCAT
41  TAAAGTGAGTTAGCTCACTCAT
36  TAATGTGAGTAAGCTCACTCAT
35  TAGTGTGAGTTAGCTCACTCAT
34  TAATGTTAGTTAGCTCACTCAT
34  TTATGTGAGTTAGCTCACTCAT
...





Example Output:

    pos wt      mut

0     0  T  0.23819
1     1  A  0.24141
2     2  A  0.24118
3     3  T  0.24016
4     4  G  0.24093
5     5  T  0.24001
...






Class Details


	
class profile_mut.ProfileMut(**kwargs)

	
	Parameters

	
	dataset_df: (pandas dataframe)

	Input data frame containing a valid dataset.



	bin: (int)

	A bin number specifying which counts to use



	start: (int)

	An integer specifying the sequence start position



	end: (int)

	An integer specifying the sequence end position



	err: (boolean)

	If true, include error estimates in computed mutual information







	Returns

	
	mut_df: (pandas data frame)

	A pandas dataframe containing results.



















          

      

      

    

  

    
      
          
            
  
mpa.ProfileInfo

Overview

profile_info is a program within the mpathic package which calculates
the mutual information between base identity at a given position and expression
for each position in the given data set.

Usage

>>> import mpathic as mpa
>>> mpa.ProfileInfo(dataset_df = dataset_df)





Example Input and Output

The input to the function must be a sorted library a column for sequences and
columns of counts for each bin. For selection experiments, ct_0 should label the
pre-selection library and ct_1 should be the post selection library. For MPRA
experiments, ct_0 should label the sequence library counts, and ct_1 should
label the mRNA counts.

Example input table:

seq       ct_0    ct_1     ct_2...
ACATT     1       4        3
GGATT     2       5        5
...





Example output table:

pos    info    info_err
0      .02     .004
1      .04     .004
...





The mutual information is given in bits.


Class Details


	
class profile_info.ProfileInfo(**kwargs)

	Profile Info computes the mutual information (in bits), at each position, between the character and the bin number.


	Parameters

	
	dataset_df: (pandas dataframe)

	Input data frame



	err: (boolean)

	If true, include error estimates in computed mutual information



	method: (string)

	method used in computation. Valid choices inlcude: ‘naive’,’tpm’,’nsb’.



	pseudocount: (float)

	pseudocount used to compute information values



	start: (int)

	An integer specifying the sequence start position



	end: (int)

	An integer specifying the sequence end position







	Returns

	
	info_df: (pandas dataframe)

	dataframe containing results.



















          

      

      

    

  

    
      
          
            
  
mpa.LearnModel


Contents


	mpa.LearnModel


	Overview


	Example Input and Output


	Class Details











Overview

LearnModel is a program within the mpathic package which generates
linear energy matrix models for sections of a sorted library.

Usage:

>>> import mpathic
>>> loader = mpathic.io
>>> filename = "./mpathic/data/sortseq/full-0/data.txt"
>>> df = loader.load_dataset(filename)
>>> mpathic.LearnModel(df=df,verbose=True,lm='ER')








Example Input and Output

There are two types of input dataframes learn model can accept as input: Matrix models and neighbour models.
The input table to this program must contain a sequences column and counts columns
for each bin. For a sort seq experiment, this can be any number of bins. For MPRA
and selection experiments this must be ct_0 and ct_1.

Matrix models Input Dataframe:

seq       ct_0       ct_1       ct_2       ct_3       ct_4

AAAAAAGGTGAGTTA   0.000000   0.000000   1.000000   0.000000   0.000000
AAAAAATATAAGTTA   0.000000   0.000000   0.000000   0.000000   1.000000
AAAAAATATGATTTA   0.000000   0.000000   0.000000   1.000000   0.000000
...





Neighbour Model:

pos     val_AA     val_AC     val_AG     val_AT     val_CA     val_CC     val_CG     val_CT     val_GA     val_GC     val_GG     val_GT     val_TA     val_TC     val_TG     val_TT
  0   0.081588  -0.019021   0.007188   0.042818  -0.048443  -0.015712  -0.053949  -0.024360  -0.025149  -0.030791  -0.022920  -0.026910   0.052324   0.002189  -0.014354   0.095505
  1   0.033288  -0.005410   0.014198   0.018246  -0.033583  -0.001761  -0.020431  -0.007561  -0.018550  -0.025738  -0.028961  -0.010787   0.007764   0.024888  -0.000199   0.054599
  2  -0.026142   0.008002  -0.029641   0.036698  -0.001028  -0.008025  -0.022645   0.023678   0.006907  -0.016295  -0.054918   0.028913  -0.005400   0.003121   0.000996   0.055780
  3  -0.046159  -0.006071  -0.001542   0.028109  -0.020442  -0.024574   0.056595  -0.024776  -0.005172  -0.055010  -0.029327  -0.016699   0.001295  -0.016304   0.128112   0.031967
 ...





Example Output Table:

pos     val_A     val_C     val_G     val_T
0     0  0.000831 -0.014006  0.144818 -0.131643
1     1 -0.033734  0.087419 -0.029997 -0.023688
2     2  0.009189  0.018999  0.026719 -0.054908
3     3 -0.003516  0.073503  0.001759 -0.071745
4     4  0.062168 -0.028879 -0.057249  0.023961
...








Class Details


	
class learn_model.LearnModel(**kwargs)

	Constructor for the learn model class. Models can be learnt via the matrix model or
the neighbor model. Matrix models assume independent contributions to activity
from characters at a particular position whereas neighbor model assume near contributions
to activity from all possible adjacent characters.


	Parameters

	
	df: (pandas data frame)

	Dataframe containing several columns representing

bins and sequence column. The integer values in bins

represent the occurrence of the sequence that bin.



	lm: (str)

	Learning model. Possible values include {‘ER’,’LS’,’IM’, ‘PR’}.

‘ER’: enrichment ratio inference. ‘LS’: least squares

optimization. ‘IM’ : mutual information maximization

(similar to maximum likelihood inference in the large data limit).

‘PR’ stands for Poisson Regression.



	modeltype: (string)

	Type of model to be learned. Valid choices include “MAT”

and “NBR”, which stands for matrix model and neigbhour model,

respectively. Matrix model assumes mutations at a location are

independent and neighbour model assumes epistatic effects for

mutations.



	LS_means_std: (pandas dataframe)

	For the least-squares method, this contains

the user supplied mean and standard deviation.

The order of the columns is [‘bin’, ‘mean’, ‘std’].



	db: (string)

	File name for a SQL script; it could be passed

in to the function MaximizeMI_memsaver



	iteration: (int)

	Total number of MCMC iterations to do. Passed

in the sample method from MCMC.py which may be

part of pymc.



	burnin: (int)

	Variables will not be tallied until this many

iterations are complete (thermalization).



	thin: (int)

	Similar to parameter burnin, but with smaller

default value.



	runnum: (int)

	Run number, used to determine the correct sql

script extension in MaximizeMI_memsaver



	initialize: (string)

	Variable for initializing the learn model class

constructor. Valid values include “rand”,

“LS”, “PR”. rand is MCMC, LS is least squares


and PR and poisson regression.






	start: (int)

	Starting position of the sequence.



	end: (int)

	end position of the sequence.



	foreground: (int)

	Indicates column number representing foreground

(E.g. can be passed to Berg_Von_Hippel method).



	background: (int)

	Indicates column number representing background.



	alpha(float)

	Regularization strength; must be a positive float. Regularization

improves the conditioning of the problem and reduces the variance of

the estimates. Larger values specify stronger regularization.

Alpha corresponds to C^-1 in other linear models such as

LogisticRegression or LinearSVC. (this snippet taken from ridge.py

written by Mathieu Blondel)



	pseudocounts: (int)

	A artificial number added to bin counts where counts are

really low. Needs to be Non-negative.



	verbose: (bool)

	A value of false for this parameter suppresses the

output to screen.



	tm: (int)

	Number bins. DOUBLE CHECK.










	
Berg_von_Hippel(df, dicttype, foreground=1, background=0, pseudocounts=1)

	Learn models using berg von hippel model. The foreground sequences are
usually bin_1 and background in bin_0, this can be changed via flags.






	
Compute_Least_Squares(raveledmat, batch, sw, alpha=0)

	Ridge regression is the only sklearn regressor that supports sample
weights, which will make this much faster






	
Markov(df, dicttype, foreground=1, background=0, pseudocounts=1)

	Learn models using berg von hippel model. The foreground sequences are
usually bin_1 and background in bin_0, this can be changed via flags.






	
MaximizeMI_memsaver(seq_mat, df, emat_0, wtrow, db=None, burnin=1000, iteration=30000, thin=10, runnum=0, verbose=False)

	Performs MCMC MI maximzation in the case where lm = memsaver






	
find_second_NBR_matrix_entry(s)

	this is a function for use with numpy apply along axis.
It will take in a sequence matrix and return the second nonzero entry






	
weighted_std(values, weights)

	Takes in a dataframe with seqs and cts and calculates the std















          

      

      

    

  

    
      
          
            
  
mpa.EvaluateModel


Contents


	mpa.EvaluateModel


	Overview


	Usage


	Example Input and Output


	Class Details











Overview

EvaluateModel can be used to predict the activity of arbitrary sequences.




Usage

>>> import mpathic as mpa
>>> model = mpa.io.load_model("./mpathic/data/sortseq/full-0/crp_model.txt")
>>> dataset = mpa.io.load_dataset("./mpathic/data/sortseq/full-0/data.txt")
>>> mpa.EvaluateModel(dataset_df = dataset, model_df = model)








Example Input and Output

Example Input Table:

pos      val_A      val_C      val_G      val_T
3  -0.070101  -0.056502   0.184170  -0.057568
4  -0.045146  -0.042017   0.172377  -0.085214
5  -0.035447   0.006974   0.059453  -0.030979
6  -0.037837  -0.000299   0.079747  -0.041611
7  -0.110627  -0.054740   0.066257   0.099110
...





Example Output Table:

output:

 0        0.348108
 1       -0.248134
 2        0.009507
 3        0.238852
 4       -0.112121
 5       -0.048588
...








Class Details


	
class evaluate_model.EvaluateModel(**kwargs)

	
	Parameters

	
	dataset_df: (pandas dataframe)

	Input dataset data frame



	model_df: (pandas dataframe)

	Model dataframe



	left: (int)

	Seq position at which to align the left-side of the model.

Defaults to position determined by model dataframe.



	right: (int)

	Seq position at which to align the right-side of the model.

Defaults to position determined by model dataframe.



















          

      

      

    

  

    
      
          
            
  
mpa.ScanModel

Overview

The scan model class can scan a model over all sequences embedde within larger contigs.

Usage

>>> import mpathic as mpa
>>> model = mpa.io.load_model("./mpathic/data/sortseq/full-0/crp_model.txt")
>>> fastafile = "./mpathic/examples/genome_ecoli_1000lines.fa"
>>> contig = mpa.io.load_contigs_from_fasta(fastafile,model)
>>> mpa.ScanModel(model_df = model, contig_list = contig)





Example Output Table:

    val                     seq   left  right ori     contig
0  2.040628  GGTCGTTTGCCTGCGCCGTGCA  11710  11731   +  MG1655.fa
1  2.006080  GGAAGTCGCCGCCCGCACCGCT  74727  74748   -  MG1655.fa
2  1.996992  TGGGTGTGGCGCGTGACCTGTT  45329  45350   +  MG1655.fa
3  1.920821  GGTATGTGTCGCCAGCCAGGCA  38203  38224   +  MG1655.fa
4  1.879852  GGTGATTTTGGCGTGGTGGCGT  73077  73098   -  MG1655.fa
5  1.866188  GTTCTTTTCCGCGGGCTGGGAT  35967  35988   -  MG1655.fa
...






Class Details


	
class scan_model.ScanModel(model_df, contig_list, numsites=10, verbose=False)

	
	Parameters

	
	model_df: (pandas dataframe)

	The dataframe containing a model of the binding energy and a wild type sequence.



	contig_list: (list)

	list containing contigs. Can be loaded from fasta file via
mpathic.io.load_contigs



	numsites: (int)

	Number of sites



	verbose: (bool)

	A value of True will force the ‘flush’ the buffer and everything will
be written to screen.



















          

      

      

    

  

    
      
          
            
  
mpa.PredictiveInfo

Overview

The predictive information class is a good way of assessing the quality of a model inferred from a massively parallel dataset.

Usage


>>> loader = mpathic.io





>>> dataset_df = loader.load_dataset(mpathic.__path__[0] + '/data/sortseq/full-0/library.txt')
>>> mp_df = loader.load_model(mpathic.__path__[0] + '/examples/true_model.txt')
    >>> ss = mpathic.SimulateSort(df=dataset_df, mp=mp_df)
>>> temp_ss = ss.output_df





>>> temp_ss = ss.output_df
>>> cols = ['ct', 'ct_0', 'ct_1', 'ct_2', 'ct_3', 'seq']
>>> temp_ss = temp_ss[cols]
>>> pi = mpathic.PredictiveInfo(data_df = temp_ss, model_df = mp_df, start=0)
>>> print(pi.out_MI)









Class Details


	
class predictive_info.PredictiveInfo(**kwargs)

	
	Parameters

	
	data_df: (pandas data frame)

	Dataframe containing several columns representing

bins and sequence column. The integer values in bins

represent the occurrence of the sequence that bin.



	model_df: (pandas dataframe)

	The dataframe containing a model of the binding

energy and a wild type sequence



	start: (int)

	Starting position of the sequence.



	end: (int)

	end position of the sequence.



	err: (bool)

	boolean variable which indiciates the inclusion of

error in the mutual information estimate if true



	coarse_graining_level: (int)

	Speed computation by coarse-graining model predictions



















          

      

      

    

  

    
      
          
            
  
Installation Issues


Fortran Compiler


1. Missing Fortran compiler

pymc [https://docs.pymc.io/] requires a fortran compiler in order to work. Please ensure pymc can be imported.

>>> import pymc





During installation, MPAthic will
look for existing fortran compilers on the user’s machine. If none are present, the following error will be thrown:

[image: _images/install_issues_1.png]



Fix

We recommend installing GCC [https://gcc.gnu.org/install/], as this satisfies both Non-Python MPAthic
dependencies (i.e. Cython and pymc). In addition to official instructions, GCC can be obtained easily on
macOS via homebrew [https://brew.sh/]:

brew install gcc








2. Updating gcc

Updates to gcc does not seem to update the paths required by pymc. An example is shown below
where the user initially installed gcc 4 but then updated to version 5:

[image: _images/install_issues_gcc_version.png]



Fix

Re-installing the version of gcc required by pymc (hence, mpathic) fixes this issue. In the case above, gcc version
4 was re-installed.






Cython

Ensure the correct version of Cython [http://cython.org/] is installed.

$ pip freeze | grep 'Cython'
$ Cython==0.28.1






1. Existing Cython versions

[image: _images/install_issues_2.png]



2 Cython environment error

[image: _images/install_issues_3.png]



Fix

Run the anaconda command:

conda install -c anaconda cython





Or pip install directly:

pip install Cython==0.28.1










Permissions

The user might not have access to install to the global site-packages directory.

[image: _images/install_issues_permission.png]

Fix

pip install mpathic --user
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Figure 4 Different model fitting methods are needed for different situations. (A) In a simple selection experiment, sequences in a
library are enriched in for the activity of interest. (B) If enrichment is an exponential function of sequence activity (as is often
assumed), matrix modeling using the method of Berg and von Hippel (BVH) is justified. BVH inference, however, can be applied
only to datasets consisting of two bins. (C) In a serial selection experiment, the sequences in different bins experience progressively
strong enrichment. (D) If each step performs exponential exponential, then the enrichment in each bin will be a different exponential
function of activity. In such cases, log enrichment regression (LER) provides a sensible way to infer models using data from all bins.
(E) In Sort-Seq experiments, variants are often partitioned using gates that are evenly spaced in log fluorescence. (F) Such sorting
can cause the enrichment in each bin to be an approximately Gaussian function of activity. In this case, inference using linear
regression (LR) is justified. (G) All massively parallel assays can be thought of as a black box that takes sequences from a library and
outputs to these sequences to a small number of bins. (H) Information maximization (IM), unlike BVH, LER, and LR, can be applied
to MPA data regardless of how enrichment depends on sequence activity. In B,D,F,H, the "enrichment” for bin M is a function of
sequence activity that is given by p(activity|bin M)/p(activity|bin 0).






_static/install_issues_permission.png
File "/System/Library/Frameworks/Python. framework/Versions/2.7/1ib/python2.7/gs,
mkdir(nane, node)
0SError: [Errno 13] Permission denied: '/Library/Python/2.7/site-packages/a]

s line 157, in makedirs

R





_images/install_issues_1.png
‘intel

Could not locate executable 95
customize NAGRCompiler.

customize TBNFCompiler
Could ot locate executoble

Could not locate executable g77
customize G3SFCompiler
Could ot locate executable g95

don't know how to conpile Fortran code on platform ‘posix’
ing: build_ext: £77_conpilerstone is not available.

" extension
* has Fortran sources but no Fortran compiler found

"gnu’

Pl





_static/minus.png





_static/install_issues_3.png
Found existing installation: Cython 0.26.1
Uninstalling Cython-0.26.1:

Could not install packages due to an EnvironmentError: [Ermno 2] No such file or directory:

/Users/jkinney/anaconda3/lib/python3.6/site-packages/__pycache_/cython.cpython-36.pyc’





_images/S0.png
A Sort-Seq

high
o
o
—— ==
-J—— - /
bacterial -_— -

d
promoter e — e puis
_——Es T =——lll-=

T LS ——
T -— low
library - —
= - =
—
1
B Massively parallel reporter assay (MPRA)
————-AAAAAA
expressed
mammalian '—'r_"-— ..... =E-AAAAAA __
enhancer omo . . .. AR L L.
library
C  Deep mutational scanning (DMS)
round 1
e
l—
protein N
coding C ——
sequence - a ——
T m— — > &
— round 2
__ o
— A —
library o

Figure 1

Figure 1 Three different massively parallel experiments. (A) The Sort-Seq assay of [7]. A plasmid library is generated in which
mutagenized versions of a bacterial promoter (blue) drive the expression of a fluorescent protein (green). Cells carrying these plasmids
are then sorted according to measured fluorescence using fluorescence-activated cell sorting (FACS). The variant promoters in each
bin of sorted cells are then sequenced. (B) The MPRA assay of [8]. Variant enhancers (blue) are used to drive the transcription of
RNA that contains enhancer-specific tags (shades of brown). Expression constructs are transfected into cell culture, after which
tag-containing RNA is isolated and sequenced. Output sequences consist of the variant enhancers that correspond to expressed tags.
(C) The DMS assay of [9]. Randomly mutagenized gene sequences (blue) produce variant proteins (colored bells) that are expressed
on the surface of phage (gray rectangles). Panning is used to enrich for phage that express proteins that bind a specific ligand of
interest (brown circles). The variant coding regions enriched after one or more rounds of panning are then sequenced.
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Figure 4 Different model fitting methods are needed for different situations. (A) In a simple selection experiment, sequences in a
library are enriched in for the activity of interest. (B) If enrichment is an exponential function of sequence activity (as is often
assumed), matrix modeling using the method of Berg and von Hippel (BVH) is justified. BVH inference, however, can be applied
only to datasets consisting of two bins. (C) In a serial selection experiment, the sequences in different bins experience progressively
strong enrichment. (D) If each step performs exponential exponential, then the enrichment in each bin will be a different exponential
function of activity. In such cases, log enrichment regression (LER) provides a sensible way to infer models using data from all bins.
(E) In Sort-Seq experiments, variants are often partitioned using gates that are evenly spaced in log fluorescence. (F) Such sorting
can cause the enrichment in each bin to be an approximately Gaussian function of activity. In this case, inference using linear
regression (LR) is justified. (G) All massively parallel assays can be thought of as a black box that takes sequences from a library and
outputs to these sequences to a small number of bins. (H) Information maximization (IM), unlike BVH, LER, and LR, can be applied
to MPA data regardless of how enrichment depends on sequence activity. In B,D,F,H, the "enrichment” for bin M is a function of
sequence activity that is given by p(activity|bin M)/p(activity|bin 0).
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Overview of MPAthic. (A) In all massively parallel assays, a library of sequences is used as input to an experiment (black box) that
outputs these sequences into one or more bins. The prevalence of each sequence in each bin depends on the assayed activity of that
sequence. MPAthic can be used to analyze data from such experiments when the input library consists of substitution-mutated versions
of a specific “wild type” sequence. (B) The data from such experiments can be represented as a table listing the number of occurrences of
each unique sequence in each bin. MPAthic provides routines for inferring quantitative models from datasets that have this form.
Routines are also provided for simulating data, for computing summary statistics, and for evaluating inferred models on arbitrary
sequences.
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Figure 1 Three different massively parallel experiments. (A) The Sort-Seq assay of [7]. A plasmid library is generated in which
mutagenized versions of a bacterial promoter (blue) drive the expression of a fluorescent protein (green). Cells carrying these plasmids
are then sorted according to measured fluorescence using fluorescence-activated cell sorting (FACS). The variant promoters in each
bin of sorted cells are then sequenced. (B) The MPRA assay of [8]. Variant enhancers (blue) are used to drive the transcription of
RNA that contains enhancer-specific tags (shades of brown). Expression constructs are transfected into cell culture, after which
tag-containing RNA is isolated and sequenced. Output sequences consist of the variant enhancers that correspond to expressed tags.
(C) The DMS assay of [9]. Randomly mutagenized gene sequences (blue) produce variant proteins (colored bells) that are expressed
on the surface of phage (gray rectangles). Panning is used to enrich for phage that express proteins that bind a specific ligand of
interest (brown circles). The variant coding regions enriched after one or more rounds of panning are then sequenced.
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